Что такое темновая фаза фотосинтеза. Фотосинтез растений. Фотосинтез, как основа питания растений. Реакции ассимиляции со2 в темновой фазе фотосинтеза

Растения получают все необходимое для роста и развития из окружающей среды. Этим они отличаются от других живых организмов. Для того, чтобы они хорошо развивались, нужны плодородная почва, естественный или искусственный полив и хорошая освещенность. В темноте ничего расти не будет.

Почва является источником воды и питательных органических соединений, микроэлементов. Но деревья, цветы, травы нуждаются также в солнечной энергии. Именно под воздействием солнечных лучей происходят определенные реакции, в результате которых углекислый газ, поглощаемый из воздуха, превращается в кислород. Такой процесс называется фотосинтезом. Химическая реакция, протекающая под воздействием солнечного света, приводит также к образованию глюкозы и воды. Эти вещества жизненно необходимы для того, чтобы растение развивалось.

На языке химиков реакция выглядит так: 6CO2 + 12H2O + свет = С6Н12О6 + 6O2 + 6Н2О. Упрощенный вид уравнения: углекислый газ + вода + свет = глюкоза + кислород + вода.

Дословно «фотосинтез» переводится как «вместе со светом». Это слово состоит из двух простых слов «фото» и «синтез». Солнце является очень мощным источником энергии. Люди используют его для выработки электричества, утепления домов, нагревания воды. Растениям тоже нужна энергия солнца для поддержания жизни. Глюкоза, образующаяся в процессе фотосинтеза - это простой сахар, являющийся одним из самых важных питательных веществ. Растения используют его для роста и развития, а избыток откладывается в листьях, семенах, плодах. Не все количество глюкозы остается в зеленых частях растений и плодах в неизменном виде. Простые сахара имеют свойство превращаться в более сложные, к числу которых можно отнести крахмал. Такие запасы растения расходуют в периоды нехватки питательных веществ. Именно ими обусловлена питательная ценность трав, плодов, цветов, листьев для животных и людей, употребляющих растительную пищу.

Как растения поглощают свет

Процесс фотосинтеза достаточно сложный, но его можно описать кратко, чтобы он стал понятным даже для детей школьного возраста. Один из самых распространенных вопросов касается механизма поглощения света. Каким образом световая энергия попадает в растения? Процесс фотосинтеза протекает в листьях. В листьях всех растений есть зеленые клетки - хлоропласты. Они содержат вещество под названием хлорофилл. Хлорофилл - пигмент, который придает листьям зеленый цвет и отвечает за поглощение световой энергии. Многие люди не задумывались о том, почему листья большинства растений широкие и плоские. Оказывается, природой предусмотрено это не случайно. Широкая поверхность позволяет поглотить большее количество солнечных лучей. По этой же причине солнечные батареи делают широкими и плоскими.

Верхняя часть листьев защищена восковым слоем (кутикулой) от потери воды и неблагоприятного воздействия погоды, вредителей. Его называют палисадным. Если внимательно посмотреть на лист, можно увидеть, что его верхняя сторона более яркая и гладкая. Насыщенный цвет получается за счет того, что в этой части хлоропластов больше. Избыток света может снизить способность растения производить кислород и глюкозу. Под воздействием яркого солнца хлорофилл повреждается и это замедляет фотосинтез. Замедление происходит и с приходом осени, когда света становится меньше, а листья начинают желтеть по причине разрушения в них хлоропластов.

Нельзя недооценивать роль воды в протекании фотосинтеза и в поддержании жизни растений. Вода нужна для:

  • обеспечения растений растворенными в ней минералами;
  • поддержания тонуса;
  • охлаждения;
  • возможности протекания химических и физических реакций.

Воду деревья, кустарники, цветы поглощают из почвы корнями, а далее влага поднимается по стеблю, переходит в листья по прожилкам, которые видны даже невооруженным глазом.

Углекислый газ проникает через маленькие отверстия в нижней части листа - устьица. В нижней части листа клетки расположены таким образом, чтобы углекислый газ мог проникать более глубоко. Это также позволяет кислороду, образующемуся при фотосинтезе, легко покидать лист. Как и все живые организмы, растения наделены способностью дышать. При этом, в отличие от животных и людей, они поглощают углекислый газ и выделяют кислород, а не наоборот. Там, где много растений, воздух очень чистый, свежий. Именно поэтому так важно заботиться о деревьях, кустарниках, разбивать скверы и парки в крупных городах.

Световая и темновая фазы фотосинтеза

Процесс фотосинтеза сложный и состоит из двух фаз - световой и темновой. Световая фаза возможна только в присутствии солнечных лучей. Под воздействием света молекулы хлорофилла ионизируются, в результате чего образуется энергия, которая служит катализатором химической реакции. Порядок событий, происходящих в этой фазе, выглядит так:

  • на молекулу хлорофилла попадает свет, который поглощается зеленым пигментом и переводит его в возбужденное состояние;
  • происходит расщепление воды;
  • синтезируется АТФ, которая является аккумулятором энергии.

Темновая фаза фотосинтеза протекает без участия световой энергии. На данном этапе образуется глюкоза и кислород. При этом важно понимать, что образование глюкозы и кислорода происходит круглосуточно, а не только в ночное время. Темновой фаза называется потому, что для ее протекания присутствие света больше не нужно. Катализатором выступает АТФ, которая была синтезирована ранее.

Значение фотосинтеза в природе

Фотосинтез - один из самых значимых природных процессов. Он необходим не только для поддержания жизни растений, но и для всего живого на планете. Фотосинтез нужен для:

  • обеспечения животных и людей питанием;
  • удаления углекислого газа и насыщения воздуха кислородом;
  • поддержания круговорота питательных веществ.

Все растения зависимы от скорости протекания фотосинтеза. Солнечную энергию можно рассматривать в качестве фактора, который провоцирует или сдерживает рост. Например, в южных районах и областях солнца много и растения могут вырастать достаточно высокими. Если рассматривать то, как процесс протекает в водных экосистемах, на поверхности морей, океанов нет недостатка в солнечных лучах и в этих слоях наблюдается обильный рост водорослей. В более глубоких слоях воды существует дефицит солнечной энергии, что сказывается на темпах роста водной флоры.

Процесс фотосинтеза способствует формированию озонового слоя в атмосфере. Это очень важно, так как он помогает защитить все живое на планете от губительного воздействия ультрафиолетовых лучей.

Любой зеленый листик – это маленькая фабрика кислорода и питательных веществ, необходимых человеку и животным для нормальной жизнедеятельности. Процесс выработки этих веществ из углекислоты и воды из атмосферы называется фотосинтезом.

Фотосинтез – это сложный , происходящий с непосредственным участием света. Само понятие «фотосинтез» происходит от двух греческих слов: «фотос» - свет и «синтез» - совмещение. Процесс фотосинтеза состоит из двух этапов: поглощения квантов света и использование их энергии в различных химических реакциях.Растение поглощает свет с помощью зеленого вещества под названием хлорофилл. Хлорофилл содержится в так называемых хлоропластах, которые могут находиться в стеблях или даже плодах. Особенно много их в , потому что благодаря своей плоской структуре лист способен притянуть больше света, соответственно, получить больше энергии для фотосинтеза. После поглощения хлорофилл переходит в и передает энергию другим молекулам растительного организма, в частности, тем, которые участвуют в фотосинтезе. Второй этап процесса проходит уже без обязательного участия квантов света и состоит в образовании химических связей с участием воды и углекислого газа, получаемого из воздуха. На этой стадии синтезируются различные полезные для жизнедеятельности вещества, такие как и крахмал.Эти органические вещества используются самим растением для питания различных его частей, поддержания нормальной жизнедеятельности. Кроме того, эти вещества получают , питаясь растениями, и люди, которые употребляют в пищу продукты как растительного, так и животного происхождения.Фотосинтез может происходить как под влиянием солнечного, так и искусственного света. На природе растения, как правило, интенсивно «работают» в весенне-летний период, когда солнечного света в избытке. Осенью света становится меньше, день укорачивается, листья желтеют и опадают. Но стоит забрезжить весеннему теплому солнышку, как зеленая листва появляется вновь и зеленые «фабрики» снова начинают свою работу, чтобы дарить кислород, столь необходимый для жизни, и другие питательные вещества.

Видео по теме

Для обеспечения жизнедеятельности все живые существа нуждаются в пище. Гетеротрофные организмы – консументы – используют готовые органические соединения, тогда как автотрофы-продуценты сами создают органические вещества в процессе фотосинтеза и хемосинтеза. Основными продуцентами на Земле являются зеленые растения.

Представляет собой последовательность химических реакций с участием фотосинтетических пигментов, в результате которых на свету создается органическое вещество из углекислого газа и воды. В суммарном уравнении шесть молекул углекислого газа соединяются с шестью молекулами воды и образуют одну молекулу , идущей на выработку энергии и запасание . Также на выходе реакции в качестве «побочного продукта» образуются шесть молекул кислорода. Процесс фотосинтеза состоит из световой и темновой фазы. Кванты света возбуждают электроны молекулы хлорофилла и переводят их на более высокий энергетический уровень. Также при участии световых лучей происходит фотолиз воды – расщепление молекулы воды до катионов водорода, отрицательно заряженных электронов и свободной молекулы кислорода. Энергия, накопленная в молекулярных связях, переходит в аденозинтрифосфат (АТФ) и будет высвобождена на второй стадии фотосинтеза. В темновой фазе углекислый газ непосредственно с с образованием глюкозы. Необходимым условием для протекания фотосинтеза в клетках зеленого пигмента – хлорофилла, поэтому он происходит в зеленых растениях и некоторых фотосинтезирующих бактериях. Фотосинтетические процессы обеспечивают планету органической биомассой, атмосферным кислородом и, как следствие, защитным озоновым экраном. Кроме того, они снижают концентрацию диоксида углерода в атмосфере. Помимо фотосинтеза, углекислый газ может быть переведен в органическое вещество и посредством хемосинтеза, который отличается от первого отсутствием световых реакций. В качестве источника энергии хемосинтетики используют на свет, а энергию окислительно-восстановительных химических реакций. К примеру, нитрифицирующие бактерии окисляют аммиак до азотистой и азотной кислоты, железобактерии превращают двухвалентное железо в трехвалентное, серобактерии окисляют сероводород до серы или серной кислоты. Все эти реакции идут с высвобождением энергии, которая и используется в дальнейшем для синтеза органических веществ. К хемосинтезу способны только некоторые виды бактерий. Бактерии-хемосинтетики не производят атмосферный кислород и не накапливают большого количества биомассы, однако они разрушают горные породы, участвуют в образовании полезных ископаемых и очищают сточные воды. Биогеохимическая роль хемосинтеза заключается в обеспечении круговорота азота, серы, железа и других элементов в природе.


Видео по теме

Жизнь на Земле возможна благодаря световой, главным образом, солнечной энергии. Эта энергия преобразуется в энергию химических связей органических веществ, образующихся в процессе фотосинтеза.

Фотосинтезом обладают все растения и некоторые прокариоты (фотосинтезирующие бактерии и сине зелёные водоросли). Такие организмы называются фототрофами . Энергию для фотосинтеза даёт свет, который улавливается особыми молекулами –фотосинтетическими пигментами. Поскольку при этом поглощается свет лишь определённой длины волны, часть световых волн не поглощается, а отражается. В зависимости от спектрального состава отражённого света пигменты приобретают окраску – зелёную, жёлтую, красную и др.

Различают три типа фотосинтетических пигментов – хлорофиллы, каротиноиды и фикобилины . Наиболее важным пигментом является хлорофилл. Основой является плоское порфириновое ядро, образованное четырьмя пиррольными кольцами, соединёнными между собой метиловыми мостиками, с атомом магния в центре. Имеются различные хлорофиллы типа- а. У высших растений, зелёных и эвгленовых водорослей имеется хлорофилл-В, который образуется из хлорофилла - А. Бурые и диатомовые водоросли вместо хлорофилла-в содержат хлорофилл-С, а красные водоросли – хлорофилл-Д. Другую группу пигментов образуют каротиноиды, имеющие окраску от жёлтой до красной. Они содержатся во всех окрашенных пластидах (хлоропластах, хромопластах) растений. Причём в зелёных частях растений хлорофилл маскирует каротиноиды, делая их незаметными до наступления холодов. Осенью зелёные пигменты разрушаются и каротиноиды становятся хорошо заметными. Каротиноиды синтезируют фототрофные бактерии и грибы. Фикобилины присутствуют у красных водорослей и цианобактерий.

Световая стадия фотосинтеза

Хлорофиллы и другие пигменты в хлоропластах образуют специфические светособирающие комплексы . Путём электромагнитного резонанса они передают собранную энергию на особые молекулы хлорофилла. Эти молекулы под действием энергии возбуждения отдают электроны молекулам других веществ – переносчикам , а затем отнимают электроны у белков и далее, от воды. Расщепление воды в процессе фотосинтеза называется фотолизом . Это происходит в полостях тилакоидов. Протоны через специальные каналы проходят в строму. При этом выделяется энергия, необходимая для синтеза АТФ:

2Н 2 О = 4е + 4Н + + О 2

АДФ + Ф = АТФ

Участие энергии света здесь является обязательным условием, поэтому данную стадию называют световой стадией. Кислород, образующийся как побочный продукт выводится наружу и используется клеткой для дыхания.

Темновая стадия фотосинтеза

Следующие реакции протекают в строме хлоропласта. Из углекислого газа и воды происходит образование моносахаридов. Сам по себе данный процесс противоречит законам термодинамики, но поскольку при этом участвуют молекулы АТФ, то за счёт этой энергии синтез глюкозы является реальным процессом. Позже, из её молекул создаются полисахариды – целлюлоза, крахмал и другие сложные органические молекулы. Суммарное уравнение фотосинтеза можно представить в следующем виде:

6СО 2 + 6Н 2 О = С 6 Н 12 О 6 + 6О 2

Особенно много крахмала откладывается в хлоропластах днём при интенсивном течении фотосинтетических процессов, ночью же крахмал расщепляется до растворимых форм и используется растением.

Хотите более подробно разобраться в этой или другой теме по биологии?Записывайтесь на онлайн-уроки к автору этой статьи Владимиру Смирнову.

Статья является выдержкой из труда Владимира Смирнова "Генезис", любое копирование и использование материала обязательно с указанием авторства.

Также предлагаем посмотреть видеоурок о фотосинтезе от нашего ботаника Ирины:

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

ОПРЕДЕЛЕНИЕ: Фотосинтез – это процесс образования органических веществ из углекислого газа и воды, на свету, с выделением кислорода.

Краткое объяснение фотосинтеза

В процессе фотосинтеза участвуют:

1) хлоропласты,

3) углекислый газ,

5) температура.

У высших растений фотосинтез происходит в хлоропластах – пластидах (полуавтономные органеллы) овальной формы, содержащих пигмент хлорофилл, благодаря зеленому цвету которого части растения также имеют зеленый цвет.

У водорослей хлорофилл содержится в хроматофорах (пигментсодержащие и светоотражающие клетки). У бурых и красных водорослей, обитающих на значительной глубине, куда плохо доходит солнечный свет, имеются другие пигменты.

Если посмотреть на пищевую пирамиду всех живых существ, фотосинтезирующие организмы находятся в самом ее низу, в составе автотроф (организмов, синтезирующих органические вещества из неорганических). Поэтому они являются источником пищи для всего живого на планете.

При фотосинтезе кислород выделяется в атмосферу. В верхних слоях атмосферы из него образуется озон. Озоновый экран защищает поверхность Земли от жесткого ультрафиолетового излучения, благодаря чему жизнь смогла выйти из моря на сушу.

Кислород необходим для дыхания растений и животных. При окислении глюкозы с участием кислорода в митохондриях запасается почти в 20 раз больше энергии, чем без него. Это делает использование пищи гораздо более эффективным, что привело к высокому уровню обмена веществ у птиц и млекопитающих.

Более подробное описание процесса фотосинтеза растений

Ход фотосинтеза:

Процесс фотосинтеза начинается с попадания света на хлоропласты – внутриклеточные полуавтономные органеллы, содержащие зеленый пигмент. Под действием света хлоропласты начинают потреблять воду из почвы, расщепляя ее на водород и кислород.

Часть кислорода выделяется в атмосферу, другая часть идет на окислительные процессы в растении.

Сахар соединяется с поступающими из почвы азотом, серой и фосфором, таким путем зеленые растения производят крахмал, жиры, белки, витамины и другие сложные соединения, необходимые для их жизни.

Лучше всего фотосинтез идет под воздействием солнечного света, однако некоторые растения могут довольствоваться и искусственным освещением.

Сложное описание механизмов фотосинтеза для продвинутого читателя

До 60-ых годов 20 века ученым был известен только один механизм фиксации углекислого газа - по С3-пентозофосфатному пути. Однако недавно группа австралийских ученых смогла доказать, что у некоторых растений восстановление углекислого газа происходит по циклу C4-дикарбоновых кислот.

У растений с реакцией С3 фотосинтез наиболее активно происходит в условиях умеренной температуры и освещенности, в основном, в лесах и в темных местах. К таким растениям относятся почти все культурные растения и большая часть овощей. Они составляют основу рациона человека.

У растений с реакцией С4 фотосинтез наиболее активно происходит в условиях высоких температура и освещенности. К таким растениям относятся, например, кукуруза, сорго и сахарный тростник, которые произрастают в теплом и тропическом климате.

Сам метаболизм растений был обнаружен совсем недавно, когда удалось выяснить, что у некоторых растений, имеющих специальные ткани для запаса воды, углекислый газ накапливается в форме органических кислот и фиксируется в углеводах лишь спустя сутки. Такой механизм помогает растениям экономить запасы воды.

Как происходит процесс фотосинтеза

Растение поглощает свет при помощи зеленого вещества, которое называется хлорофилл. Хлорофилл содержится в хлоропластах, которые находятся в стеблях или плодах. Особенно большое их количество в листьях, потому что из-за своей очень плоской структуры листок может притянуть много света, соответственно, получить намного больше энергии для процесса фотосинтеза.

После поглощения хлорофилл находится в возбужденном состоянии и передает энергию другим молекулам организма растения, особенно, тем, которые непосредственно участвуют в фотосинтезе. Второй этап процесса фотосинтеза проходит уже без обязательного участия света и состоит в получении химической связи с участием углекислого газа, получаемого из воздуха и воды. На данной стадии синтезируются разные очень полезные для жизнедеятельности вещества, такие как крахмал и глюкоза.

Эти органические вещества используют сами растения для питания разных его частей, а также для поддержания нормальной жизнедеятельности. Кроме того, эти вещества также получают и животные, питаясь растениями. Люди тоже получают эти вещества, употребляя в пищу продукты животного и растительного происхождения.

Условия для фотосинтеза

Фотосинтез может происходить как под действием искусственного света, так и солнечного. Как правило, на природе растения интенсивно «работают» в весенне-летний период, когда необходимого солнечного света много. Осенью света меньше, день укорачивается, листья сначала желтеют, а потом опадают. Но стоит появиться весеннему теплому солнцу, как зеленая листва вновь появляется и зеленые «фабрики» снова возобновят свою работу, чтобы давать кислород, такой необходимый для жизни, а также множество других питательных веществ.

Альтернативное определение фотосинтеза

Фотоси́нтез (от др.-греч. фот- свет и синтез - соединение, складывание, связывание, синтез) - процесс преобразования энергии света в энергию химических связей органических веществ на свету фотоавтотрофами при участии фотосинтетических пигментов (хлорофилл у растений, бактериохлорофилл и бактериородопсин у бактерий). В современной физиологии растений под фотосинтезом чаще понимается фотоавтотрофная функция - совокупность процессов поглощения, превращения и использования энергии квантов света в различных эндэргонических реакциях, в том числе превращения углекислого газа в органические вещества.

Фазы фотосинтеза

Фотосинтез – процесс довольно сложный и включает две фазы: световую, которая всегда происходит исключительно на свету, и темновую. Все процессы происходят внури хлоропластов на особых маленьких органах - тилакодиах. В ходе световой фазы хлорофиллом поглощается квант света, в результате чего образуются молекулы АТФ и НАДФН. Вода при этом распадается, образуя ионы водорода и выделяя молекулу кислорода. Возникает вопрос, что это за непонятные загадочные вещества: АТФ и НАДН?

АТФ – это особые органические молекулы, которые имеются у всех живых организмов, их часто называют «энергетической» валютой. Именно эти молекулы содержат высокоэнергетические связи и являются источником энергии при любых органических синтезах и химических процессах в организме. Ну, а НАДФН – это собственно источник водорода, используется непосредственно при синтезе высокомолекулярных органических веществ - углеводов, который происходит во второй, темновой фазе фотосинтеза с использованием углекислого газа.

Cветовая фаза фотосинтеза

В хлоропластах содержится очень много молекул хлорофилла, и все они поглощают солнечный свет. Одновременно свет поглощается и другими пигментами, но они не умеют осуществлять фотосинтез. Сам процесс происходит лишь только в некоторых молекулах хлорофилла, которых совсем немного. Другие же молекулы хлорофилла, каротиноидов и других веществ образуют особые антенные, а также светособирающие комплексы (ССК). Они, как антенны, поглощают кванты света и передают возбуждение в особые реакционные центры или ловушки. Эти центры находятся в фотосистемах, которых у растений две: фотосистема II и фотосистема I. В них имеются особые молекулы хлорофилла: соответственно в фотосистеме II - P680, а в фотосистеме I - P700. Они поглощают свет именно такой длины волны(680 и 700 нм).

По схеме более понятно, как все выглядит и происходит во время световой фазы фотосинтеза.

На рисунке мы видим две фотосистемы с хлорофиллами Р680 и Р700. Также на рисунке показаны переносчики, по которым происходит транспорт электронов.

Итак: обе молекулы хлорофилла двух фотосистем поглощают квант света и возбуждаются. Электрон е- (на рисунке красный) у них переходит на более высокий энергетический уровень.

Возбужденные электроны обладает очень высокой энергией, они отрываются и поступают в особую цепь переносчиков, которая находится в мембранах тилакоидов – внутренних структур хлоропластов. По рисунку видно, что из фотосистемы II от хлорофилла Р680 электрон переходит к пластохинону, а из фотосистемы I от хлорофилла Р700 – к ферредоксину. В самих молекулах хлорофилла на месте электронов после их отрыва образуются синие дырки с положительным зарядом. Что делать?

Чтобы восполнить недостачу электрона молекула хлорофилла Р680 фотосистемы II принимает электроны от воды, при этом образуются ионы водорода. Кроме того, именно за счет распада воды образуется выделяющийся в атмосферу кислород. А молекула хлорофилла Р700, как видно из рисунка, восполняет недостачу электронов через систему переносчиков от фотосистемы II.

В общем, как бы ни было сложно, именно так протекает световая фаза фотосинтеза, ее главная суть заключается в переносе электронов. Также по рисунку можно заметить, что параллельно транспорту электронов происходит перемещение ионов водорода Н+ через мембрану, и они накапливаются внутри тилакоида. Так как их там становится очень много, они перемещаются наружу с помощью особого сопрягающего фактора, который на рисунке оранжевого цвета, изображен справа и похож на гриб.

В завершении мы видим конечный этап транспорта электрона, результатом которого является образование вышеупомянутого соединения НАДН. А за счет переноса ионов Н+ синтезируется энергетическая валюта – АТФ (на рисунке видно справа).

Итак, световая фаза фотосинтеза завершена, в атмосферу выделился кислород, образовались АТФ и НАДН. А что же дальше? Где обещанная органика? А дальше наступает темновая стадия, которая заключается, главным образом, в химических процессах.

Темновая фаза фотосинтеза

Для темновой фазы фотосинтеза обязательным компонентом является углекислый газ – СО2. Поэтому растение должно постоянно его поглощать из атмосферы. Для этой цели на поверхности листа имеются специальные структуры – устьица. Когда они открываются, СО2 поступает именно внутрь листа, растворяется в воде и вступает в реакцию световой фазы фотосинтеза.

В ходе световой фазы у большинства растений СО2 связывается с пятиуглеродным органическим соединением (которое представляет собой цепочку из пяти молекул углерода), в результате чего образуются две молекулы трехуглеродного соединения (3-фосфоглицериновая кислота). Т.к. первичным результатом являются именно эти трехуглеродные соединения, растения с таким типом фотосинтеза получили название С3-растений.

Дальнейший синтез в хлоропластах происходит довольно сложно. В его конечном итоге образуется шестиуглеродное соединение, из которого в дальнейшем могут синтезироваться глюкоза, сахароза или крахмал. В виде этих органических веществ растение накапливает энергию. При этом в листе остается только небольшая их часть, которая используется для его нужд, в то время как остальные углеводы путешествуют по всему растению, поступая туда, где больше всего нужна энергия - например, в точки роста.

Процесс фотосинтеза завершается реакциями темновой фазы, в ходе которых образуются углеводы. Для осуществления этих реакций используется энергия и вещества, запасённые в ходе световой фазы: за открытие данного цикла реакций в 1961 году была присуждена Нобелевская премия. Постараемся рассказать кратко и понятно про темновую фазу фотосинтеза.

Локализация и условия

Реакции темновой фазы проходят в строме (матриксе) хлоропластов. Они не зависят от наличия света, т. к. необходимая для них энергия уже запасена в форме АТФ.

Для синтеза углеводов используется водород, полученный при фотолизе воды и связанный в молекулах НАДФН₂. Также необходимо наличие сахаров, к которым будет присоединяться атом углерода из молекулы СО₂.

Источником сахаров для прорастающих растений является эндосперм - запасные вещества, которые находятся в семени и получены от родительского растения.

Изучение

Совокупность химических реакций темновой фазы фотосинтеза, ведущую к образованию глюкозы, открыл со своими сотрудниками М. Кальвин.

ТОП-4 статьи которые читают вместе с этой

Рис. 1. Мелвин Кальвин в лаборатории.

Первым этапом фазы является получение соединений с тремя атомами углерода.

Для некоторых растений первым этапом будет образование органических кислот с 4 атомами углерода. Этот путь был открыт австралийскими учёными М. Хетчем и С. Слэком и называется С₄ – фотосинтезом.

Итогом С₄ – фотосинтеза также является глюкоза и другие сахара.

Связывание СО₂

За счёт энергии АТФ, полученной в световой фазе, в строме активируются молекулы рибулозофосфата. Он превращается в высокореакционное соединение рибулозодифосфат (РДФ), имеющее 5 атомов углерода.

Рис. 2. Схема присоединение СО₂ к РДФ.

Образуются две молекулы фосфоглицериновой кислоты (ФГК), имеющей три углеродных атома. На следующем этапе ФГК реагирует с АТФ и образует дифосфоглицериновую кислоту. ДиФГК взаимодействует с НАДФН₂ и восстанавливается до фосфоглицеринового альдегида (ФГА).

Все реакции происходят только под воздействием соответствующих ферментов.

ФГА образует фосфодиоксиацетон.

Образование гексозы

На следующем этапе путём конденсации ФГА и фосфодиоксиацетона образуется фруктозодифосфат, который содержит 6 атомов углерода и является исходным материалом для образования сахарозы и полисахаридов.

Рис. 3. Схема темновой фазы фотосинтеза.

Фруктозодифосфат может взаимодействовать с ФГА и другими продуктами темновой фазы, давая начало цепям 4-, 5-, 6-, 7-углеродных сахаров. Одним из устойчивых продуктов фотосинтеза является рибулозофосфат, который снова включается в цикл реакций, взаимодействуя с АТФ. Чтобы получить молекулу глюкозы проходит 6 циклов реакций темновой фазы.

Углеводы являются основным продуктом фотосинтеза, но также из промежуточных продуктов цикла Кальвина образуются аминокислоты, жирные кислоты, гликолипиды.

Таким образом, в организме растения многие функции зависят от того, что происходит в темновой фазе фотосинтеза. Вещества, полученные в этой фазе, используются в биосинтезе белков, жиров, дыхании и других внутриклеточных процессах.Оценка доклада

Средняя оценка: 4 . Всего получено оценок: 90.

27-Фев-2014 | Один Комментарий | Лолита Окольнова

Фотосинтез — процесс образования органических веществ из углекислого газа и воды на свету при участии фотосинтетических пигментов.

Хемосинтез - способ автотрофного питания, при котором источником энергии для синтеза органических веществ из CO 2 служат реакции окисления неорганических соединений

Обычно все организмы, способные из неорганических веществ синтезировать органические, т.е. организмы, способные к фотосинтезу и хемосинтезу , относят к .

К автотрофам традиционно относят и некоторые .

Кратко мы говорили о в ходе рассматрения строения растительной клетки, давайте разберем весь процесс поподробнее.. .

Суть фотосинтеза

(суммарное уравнение)

Основное вещество, участвующее в многоступенчатом процессе фотосинтеза — хлорофилл . Именно оно трансформирует солнечную энергию в химическую.

На рисунке указано схематическое изображение молекулы хлорофилла, кстати, молекула очень похожа на молекулу гемоглобина…

Хлорофилл встроен в граны хлоропластов :

Световая фаза фотосинтеза:

(осуществляется на мембранах тилакойдов)

  • Свет, попав на молекулу хлорофилла, поглощается им и приводит его в возбужденное состояние — электрон, входящий в состав молекулы, поглотив энергию света, переходит на более высокий энергетический уровень и участвует в процессах синтеза;
  • Под действием света так же происходит расщепление (фотолиз) воды:


Кислород при этом удаляется во внешнюю среду, а протоны накапливаются внутри тилакоида в «протонном резервуаре»

2Н + + 2е - + НАДФ → НАДФ·Н 2

НАДФ — это специфическое вещество, кофермент, т.е. катализатор, в данном случае — переносчик водорода.

  • синтезируется (энергия)

Темновая фаза фотосинтеза

(протекает в стромах хлоропластов)

собственно синтез глюкозы

происходит цикл реакций, в которых образуется С 6 H 12 O 6 . В этих реакциях используются энергии АТФ и НАДФ·Н 2 , образованных в световую фазу; rроме глюкозы, в процессе фотосинтеза образуются другие мономеры сложных органических соединений - аминокислоты, глицерин и жирные кислоты, нуклеотиды

Обратите внимание: темновой эта фаза называется не потому что идет ночью — синтез глюкозы происходит, в общем-то, круглосуточно, но для темновой фазы уже не нужна световая энергия.

“Фотосинтез — это процесс, от которого в конечной инстанции зависят все проявления жизни на нашей планете”.

К.А.Тимирязев.

В результате фотосинтеза на Земле образуется около 150 млрд т органического вещества и выделяется около 200 млрд т свободного кислорода в год. Кроме того, растения вовлекают в круговорот миллиарды тонн азота, фосфора, серы, кальция, магния, калия и других элементов. Хотя зеленый лист использует лишь 1-2% падающего на него света, создаваемые растением органические вещества и кислород в целом .


Хемосинтез

Хемосинтез осуществляется за счет энергии, выделяющейся при химических реакциях окисления различных неорганических соединений: водорода, сероводорода, аммиака, оксида железа (II) и др.

Соответственно веществам, включенным в метаболизм бактерий, существуют:

  • серобактерии — микроорганизмы водоемов, содержащих H 2 S — источники с очень характерным запахом,
  • железобактерии,
  • нитрифицирующие бактерии — окисляют аммиак и азотистую кислоту,
  • азотфиксирующие бактерии — обогащают почвы, чрезвычайно повышают урожайность,
  • водородокисляющие бактерии

Но суть остается та же — это тоже